Tables of Gaussian and SI Units
Mechanical
Quantity | SI | CGS–ESU | Gaussian | CGS–EMU |
---|---|---|---|---|
Force, F | newton (N) = kg m s−2 | dyne (dyn) = g cm s−2 | ||
M L T−2 | ||||
Energy, E | joule (J) = N⋅m = kg m2 s−2 | erg = dyn⋅cm = g cm2 s−2 | ||
M L2 T−2 | ||||
Angular momentum, L | J⋅s = kg m2 s−1 | erg⋅s = g cm2 s−1 | ||
M L2 T−1 |
Electric
Quantity | SI | CGS–ESU | Gaussian | CGS–EMU |
---|---|---|---|---|
Charge, Q, q | coulomb (C) = A⋅s | franklin (Fr) = statcoulomb (statC) = esu charge = dyn1/2⋅cm = erg1/2⋅cm1/2 = g1/2 cm3/2 s−1 | Bi⋅s = abcoulomb (abC) = emu charge = dyn1/2⋅s = g1/2 cm1/2 | |
T I | M1/2 L3/2 T−1 | M1/2 L1/2 | ||
Charge density, ρ | C/m3 | Fr/cm3 = dyn1/2/cm2 = g1/2 cm−3/2 s−1 | abC/cm3 = Bi⋅s/cm3 | |
L−3 T I | M1/2 L−3/2 T−1 | M1/2 L−5/2 | ||
Electric potential/voltage, V | volt (V) = J/C = kg m2 s−3 A−1 | statvolt (statV) = erg/Fr = Fr/cm = g1/2 cm1/2 s−1 | abvolt (abV) = erg/(Bi⋅s) = dyn1/2⋅cm/s = g1/2 cm3/2 s−2 | |
M L2 T−3 I−1 | M1/2 L1/2 T−1 | M1/2 L3/2 T−2 | ||
Electric field, E | V/m = N/C = kg m s−3 A−1 | statV/cm = dyn/Fr = Fr/cm2 = g1/2 cm−1/2 s−1 | abV/cm | |
M L T−3 I−1 | M1/2 L−1/2 T−1 | M1/2 L1/2 T−2 | ||
Electric displacement field, D | C/m2 | Fr/cm2 | Bi⋅s/cm2 | |
L−2 T I | M1/2 L−1/2 T−1 | M1/2 L−3/2 | ||
Polarization density, P | C/m2 | Fr/cm2 | ||
L−2 T I | M1/2 L−1/2 T−1 | |||
Electric flux, ΦE | V⋅m = N⋅m2/C = kg m3 s−3 A−1 | Fr | ||
M L3 T−3 I−1 | M1/2 L3/2 T−1 | |||
The other electric flux, ΦD | C | Fr | ||
T I | M1/2 L3/2 T−1 | |||
Electric dipole moment, p | C⋅m | Fr⋅cm | ||
L T I | M1/2 L5/2 T−1 | |||
Electric permittivity, ε | F/m = C/(V⋅m) = C2/(N⋅m2) = kg−1 m−3 s4 A2 | cm/cm | s2/cm2 | |
M−1 L−3 T4 I2 | 1 | L−2 T2 |
Magnetic
Quantity | SI | CGS–ESU | Gaussian | CGS–EMU |
---|---|---|---|---|
Current, I, j | ampere (A) = C/s | Fr/s = statampere (statA) = esu current = dyn1/2⋅cm/s = g1/2 cm3/2 s−2 | biot (Bi) = abampere (abA) = emu current = dyn1/2 = g1/2 cm1/2 s−1 | |
I | M1/2 L3/2 T−2 | M1/2 L1/2 T−1 | ||
Current density, J, j | A/m2 | statA/cm2 | Bi/cm2 | |
L−2 I | M1/2 L−1/2 T−2 | M1/2 L−3/2 T−1 | ||
Magnetic vector potential, A | V⋅s/m = kg⋅m/(s⋅C) = N/A = kg m s−2 A−1 | statWb/cm = statT⋅cm | Mx/cm = G⋅cm | |
M L T−2 I−1 | M1/2 L−1/2 | M1/2 L1/2 T−1 | ||
Magnetic flux density, B | tesla (T) = Wb/m2 = N⋅s/(C⋅m) = N/(A⋅m) = V⋅s/m2 = kg s−2 A−1 | stattesla (statT) = statWb/cm2 | gauss (G) = Mx/cm2 = g/(Bi⋅s2) | |
M T−2 I−1 | M1/2 L−3/2 | M1/2 L−1/2 T−1 | ||
Magnetic field strength, H | A/m | statA/cm | oersted (Oe) = dyn/Mx | |
L−1 I | M1/2 L1/2 T-2 | M1/2 L−1/2 T−1 | ||
Magnetic flux, ΦB | weber (Wb) = V⋅s = kg m2 s−2 A−1 | statweber (statWb) = statV⋅s | maxwell (Mx) = G⋅cm2 | |
M L2 T−2 I−1 | M1/2 L1/2 | M1/2 L3/2 T−1 | ||
Magnetic dipole moment, μ, m | A⋅m2 = N⋅m/T = J/T | statA⋅cm2 | erg/G = g1/2 cm5/2 s−1 | |
L2 I | M1/2 L7/2 T−2 | M1/2 L5/2 T−1 | ||
Magnetization, M, 4πM | A/m | erg/(G⋅cm3) | ||
L−1 I | ||||
Magnetic permeability, μ | H/m | s2/cm2 | cm/cm | |
M L T−2 I−2 | L−2 T2 | 1 | ||
Magnetomotive force, ℱ | A | Gi | ||
I | ||||
Magnetic reluctance, ℛ | H−1 | Gi/Mx | ||
M−1 L−2 T2 I2 |
Other
Quantity | SI | CGS–ESU | Gaussian | CGS–EMU |
---|---|---|---|---|
Capacitance, C | farad (F) = C/V = kg−1 m−2 s4 A2 | statfarad (statF) = cm | abfarad (abF) | |
M−1 L−2 T4 I2 | L | |||
Inductance, L | henry (H) = Wb/A = kg m2 s−2 A−2 | stathenry (statH) = s2/cm | abhenry (abH) = abΩ⋅s | |
M L2 T−2 I−2 | L−1 T2 | L | ||
Resistance, R | ohm (Ω) = V/A = kg m2 s−3 A−2 | statohm (statΩ) = s/cm | abohm (abΩ) = abV/Bi | |
M L2 T−3 I−2 | L−1 T | L T−1 | ||
Conductance, G | siemens (S) = mho (℧) = Ω−1 = kg−1 m−2 s3 A2 | cm/s | ||
M−1 L−2 T3 I2 | L T−1 | |||
Resistivity, ρ | Ω⋅m = kg m3 s−3 A−2 | s | abΩ⋅cm | |
M L3 T−3 I−2 | T | L2 T−1 | ||
Conductivity, σ | S/m = ℧/m = kg−1 m−3 s3 A2 | s−1 | ||
M−1 L−3 T3 I2 | T−1 |
Closures
To define the value of a unit, we're required to set a physical constant to a measurable value (Colton, 2024). The SI and Gaussian system take different approaches to "closing" the system of electromagnetic equations.
SI:
Set magnetic permeability μ₀ to 4π × 10⁻⁷ N/A²
Gaussian:
Set electric permittivity ε₀ to 1/4π (or, Coulomb's constant k<sub>c</sub> to 1)
Sources
- Cardarelli, F. (2003). Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins (Springer, London).
- Colton, J. (2024). Gaussian Units.